Synthesis and testing of the first azobenzene mannobioside as photoswitchable ligand for the bacterial lectin FimH

نویسندگان

  • Vijayanand Chandrasekaran
  • Katharina Kolbe
  • Femke Beiroth
  • Thisbe K Lindhorst
چکیده

In order to allow spatial and temporal control of carbohydrate-specific bacterial adhesion, it has become our goal to synthesise azobenzene mannosides as photoswitchable inhibitors of type 1 fimbriae-mediated adhesion of E. coli. An azobenzene mannobioside 2 was prepared and its photochromic properties were investigated. The E→Z isomerisation was found to be highly effective, yielding a long-lived (Z)-isomer. Both isomers, E and Z, show excellent water solubility and were tested as inhibitors of mannoside-specific bacterial adhesion in solution. Their inhibitory potency was found to be equal and almost two orders of magnitude higher than that of the standard inhibitor methyl mannoside. These findings could be rationalised on the basis of computer-aided docking studies. The properties of the new azobenzene mannobioside have qualified this glycoside to be eventually employed on solid support, in order to fabricate photoswitchable adhesive surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoswitchable precision glycooligomers and their lectin binding

The synthesis of photoswitchable glycooligomers is presented by applying solid-phase polymer synthesis and functional building blocks. The obtained glycoligands are monodisperse and present azobenzene moieties as well as sugar ligands at defined positions within the oligomeric backbone and side chains, respectively. We show that the combination of molecular precision together with the photoswit...

متن کامل

Photoswitchable cluster glycosides as tools to probe carbohydrate-protein interactions: synthesis and lectin-binding studies of azobenzene containing multivalent sugar ligands.

Synthetic cluster glycosides have often been used to unravel mechanisms of carbohydrate-protein interactions. Although synthetic cluster glycosides are constituted on scaffolds to achieve high avidities in lectin binding, there have been no known attempts to modulate the orientations of the sugar clusters with the aid of a functional scaffold onto which the sugar units are linked. Herein, we de...

متن کامل

Catch-bond mechanism of the bacterial adhesin FimH.

Ligand-receptor interactions that are reinforced by mechanical stress, so-called catch-bonds, play a major role in cell-cell adhesion. They critically contribute to widespread urinary tract infections by pathogenic Escherichia coli strains. These pathogens attach to host epithelia via the adhesin FimH, a two-domain protein at the tip of type I pili recognizing terminal mannoses on epithelial gl...

متن کامل

A bivalent glycopeptide to target two putative carbohydrate binding sites on FimH

FimH is a mannose-specific bacterial lectin found on type 1 fimbriae with a monovalent carbohydrate recognition domain (CRD) that is known from X-ray studies. However, binding studies with multivalent ligands have suggested an additional carbohydrate-binding site on this protein. In order to prove this hypothesis, a bivalent glycopeptide ligand with the capacity to bridge two putative carbohydr...

متن کامل

Are D-manno-configured Amadori products ligands of the bacterial lectin FimH?

The Amadori rearrangement was employed for the synthesis of C-glycosyl-type D-mannoside analogues, namely 1-propargylamino- and 1-phenylamino-1-deoxy-α-D-manno-heptopyranose. They were investigated as ligands of type 1-fimbriated E. coli bacteria by means of molecular docking and bacterial adhesion studies. It turns out that Amadori rearrangement products have a limited activity as inhibitors o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013